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The representation theory of the icosahedral group 
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$ Cavendish Laboratory, Madingley Road, Cambridge, UK 
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Abstract. A study is made of the representation theory of the icosahedral group I by 
exploiting the natural embeddings of the latter in the rotation groups in three and four 
dimensions. In particular it is shown that each irreducible representation of I is the 
restriction of some irreducible representation of S0(4), and that this enables the irreducible 
representations of I to be symmetrized. 

1. Introduction 

In a recent paper (Backhouse and Gard 1974a), an account was given of the reduction 
of the symmetrized powers of the irreducible representations (reps) of the three-dimen- 
sional point groups. The work was incomplete in that it was not possible to treat 
fully the icosahedral group, Z, using the methods developed therein. The difficulty is 
that Z possesses some reps which are neither induced linear characters nor subduced 
from reps of SO(3). The aim of the present paper is to demonstrate that the symmetriza- 
tion problem is nevertheless tractable for Z by the use of some features of its character 
theory, which are also of interest in their own right. 

There are at least three realizations of the abstract group behind Z:  the proper 
rotation group of the icosahedron (or dodecahedron) in three-dimensional Euclidean 
space E , :  the proper rotation group, P, say, of the regular pentrahedroid (regular 
four-simplex) in E , ;  the alternating group on five letters, A s .  In this paper we exploit 
the two geometrical characterizations, but make little mention of the third. The reason 
for this, briefly, is that the isomorphism between Z, P5 and A , ,  and more generally 
between P, and A , ,  has considerable value for the representation theory of A 5 ,  generally 
A , ,  especially their spin characters. However, it is the insight into the representation 
theory of Z in which we are primarily interested here. 

The structure of the paper is as follows. In 8 2 we consider the relationship between 
the rep theory (both single- and double-valued) of Zand that of the rank one Lie group 
S0(3), and in particular we perform the reduction of the subduced representations 
DJ 1 Z, where DJ is the (2j+ 1)-dimensional rep of S0(3),  for j = 0, i, 1,. . . . The value 
of these reductions is enhanced by the introduction of an algebraic operation (denoted 
by - )  on the character table of Z which has the special property of interchanging the 
two two-dimensional reps, interchanging the two three-dimensional reps, but leaving 
the others invariant. By combining these results with the formulae for symmetrizing 
the reps of SU(2), the natural universal covering group of SO(3) (see Gard and Backhouse 
1974), we are able to symmetrize the reps of Z, with one exception. Unfortunately the 

2101 



2102 N B Backhouse and P Gard 

single-valued four-dimensional rep of Z does not fall nicely within this scheme ; the best 
we can say is that it is the Kronecker product of the two two-dimensional reps, and hence 
may be symmetrized using the inner Kronecker product theory for symmetric groups. 

Although this fills the lacuna in Backhouse and Gard (1974a), there is virtue in 
looking at the embedding of Z in SO(4). Indeed, in 0 3, we are able to tie together the 
results of 0 2 and also find a better method of symmetrizing the awkward four-dimen- 
sional rep. We note in particular that every rep of Z is the restriction of some rep of 
SO(4). The fact that Zembeds in SO(4) is well known, but to our knowledge the discussion 
of their relative rep structures is new. 

The icosahedral group is becoming of increasing importance in quantum physics 
and chemistry (see, for example, the recent paper of Boyle 1972 and the works cited 
therein). Although Z is non-crystallographic in three dimensions, it is nevertheless true 
that in certain crystals there is a local icosahedral environment, and hence there are 
applications of Zin crystal field theory. We also remark that four-dimensional orthogonal 
groups are well known in quantum chemistry (see for example Wulfman 1971). 

2. The icosahedral group 

I t  is well known that the three-dimensional proper symmetry group Zof the icosahedron 
and its dual, the dodecahedron, for whose constructive details we refer to Cundy and 
Rollett (1961), is isomorphic to the alternating group A 5 .  l i s  a simple group of order 60 
having its elements distributed into five conjugacy classes as follows : the trivial class 
is denoted by C1 ; C2 denotes the class containing 12 rotations through angles 2n/5 and 
8n/5 ; C3 denotes the class containing 12 rotations through angles 4 4 5  and 6n/5 ; the 
class containing 15 two-fold rotations is denoted by C4 ;the class containing 20 three-fold 
rotations is denoted by C5.  Z has five single-valued reps and four double-valued reps, 
the characters of the latter vanishing on the class C4 by Opechowski's theorem (see also 
Backhouse 1973). In table 1 of the appendix we reproduce the character table of Z. 
Also table 3 contains, among other things, relationships between the reps of Z and SO(3). 

We find that the reps T2, E, , ,  , G are not directly related to reps of S0(3), yet there is 
some connection between T2 and 7'' = D' 1 Z and between E712 and 1 Z. We also 
note that G = 0 E 7 / 2 .  Our first goal is to explain these relationships in order 
that manipulations may be performed within the SO(3) context. 

It is sometimes convenient to consider separately single- and double-valued 
characters, but there is some virtue now in viewing them as the full set of inequivalent 
simple characters of the double group Z .  Then, considered as class functions on Z ,  the 
simple characters generate, by taking finite integral sums and differences, an algebraic 
structure called the integral character ring of Z', denoted by C(Z'). Multiplication is also 
allowed, being distributive over addition, if reductions are performed using the Kronecker 
product formula. Now we notice that (1 + ,/5)/2 = o + 1 + w4 and (1 - ,/5)/2 = o2 + 1 
+a3, where o = exp(2ni/5), hence the values of the characters of Z'can be written in the 
ring obtained by adjoining fifth roots of unity to the integers. This ring possesses an 
automorphism, -, defined by 

ao+a ,o+a202+a3m3+a4w4 S a 0 + a l o 2 + a 2 m 4 + a 3 0 + a 4 m 3  

for integers a,, i = 0, 1, . . . ,4. Briefly, - leaves the integers invariant but squares the 
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fifth roots of unity, The important point for us is that N interchanges (1 +J5)/2 and 
(1 - J5)/2, hence the ring automorphism induced by - on C(Z) interchanges Tl and T2, 
interchanges E , / ,  and E 7 i 2 ,  but leaves the other simple characters invariant. Furthermore, 
because 5 preserves multiplication, we can write rl @ r2 S f ,  @ f2 ,  for characters 
r l ,  T2 of Z: and (T)["] = rrV1, where r["] is the [VI-symmetrized nth power of the character 
r corresponding to the rep [v] of the symmetric group S,, . We add finally that the above 
results could more briefly be said to be consequences of the fact that (lf,1'5)/2 are 
algebraically conjugate roots of the irreducible monic polynomial x2 --x - 1. 

The procedure to be followed for symmetrizing the reps of l i s  now clear-we are here 
reverting to the single group notion. If x = xj 1 Z is a character of Z, where xj is the 
character of the rep Dj of S0(3), then x["] = (xj)["] 1 Z, (#"I being reduced using the 
theory of Gard andL Backhouse (1974). If x, a character of Z, is such that 2 = 1' 1 1, for 
some j, then f ' ]  = ( ~ j ) ~ " '  1 Z.'To symmetrize the exceptional rep G we use 
the following theorem which is an easy consequence of the Frobenius formula (see, for 
example, p 331 of Weyl 1950). 

ElI2 0 

Theorem. Let D,, D2 be representations of the group G, and let [v] denote a rep of the 
symmetric group S,, . Then 

where [v,], [ v 2 ]  are reps of S,, and p([v]; [v,], [ v 2 ] )  is the frequency of [VI in the inner 
Kronecker product [ v,] 0 [ v2]. 

In the case under consideration, D,, D2 are two-dimensional, so it suffices to restrict the 
summation in (2.1) to those reps [v,], [ v 2 ]  with one- and two-rowed Young's diagrams. 
We refer the readers to Hamermesh (1964) for the known details of the Clebsch4ordan 
theory of the symmetric groups. 

In order to implement the relationship between Z and SO(3) for the solution of the 
problem of symmetrizing the reps of Z, we also need to know the reductions D' J. Zfor all 
j. It turns out that there is a considerable regularity and fine structure which simplifies 
the solution. Using the character formula 

sin( j + +)e 
sin +e ' xj(e) = for 0 # 0, 

for the reps of S0(3), we find the following relations. First, for single-valued reps 

4j+30 = $'+(Reg), (2.2) 

where 4j is the character of Dj 1 Z, and (Reg) denotes the character of the regular rep of Z, 
namely A + 3 T, + 3 T2 + 4G + 5H ; 

+J+ @' = (Reg), (2.3) 

i f j + f  = 29; 2$i7, 49+45, 411+43, 413+41 have a common value a = 2T,+2T2+ 
2 G + 2 H : ~ 8 + 4 6 , 4 1 0 + 4 4 , 4 ' 2 ' + 4 2 , 4 ' 4 + 4 0  haveacommonvalue/3 = A+T,+T'+ 
2G+3H. Note that u + / l  = (Reg). I t  now suffices to calculate 4' = A,  4' = TI, 
4 -  - H ,  43 = T2+G, 44 = G + H ,  4' = T,+T*+H, 46= A + T ' + G + H .  
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Secondly, for half-integer reps we have 

@+” = +’+$Reg)’, 

where (Reg)’ denotes the double-valued regular character, namely 2E,,, + 2E,,, + 
4G3/z+ 61512; 

@+ 4J’ = $Reg)’, (2.5) 

ifj+j‘ = 14; + 4’j2, 4’ ’,’, + +’I2 have a common value 6, where 6 + 4912 = $Reg)’. 
It now suffices to calculate 4’12 = E,,,, 4312 = G312, 45/2 = 15/,, 47!2 = E7,2+15,2r 
49,’2 = G 3 / 2  + I,,, . These results fully extend the tabulations of Cohan (1958). 

3. The pentahedroidal group 

The regular figure which is the four-dimensional analogue of the regular tetrahedron 
and the equilateral triangle is called the regular pentahedroid. For example, the five 
points A(4/45,0,0,0), B( - 1/J5, - 1, 1, l), C( - 1/45, 1, - 1, l), D( - 1/45, 1, 1, - l), 
E( - l i J 5 ,  - 1, - 1, - 1) form the vertices of such a figure, for it is easy to check that the 
vertices are equidistant from one another, and that angles between incident lines are 
equal. Note that any four of the vertices are those of a regular tetrahedron. We have 
arranged the vertices so that the proper symmetry group of BCDE is 1 0 T, as a sub- 
group of S0(4), where 1 acts as the identity on the first coordinate and Tis  the proper 
tetrahedral group, in a standard setting, acting on the last three coordinates. Now we 
may verify directly that the special orthogonal matrix M ,  given by 

(3.1) 

permutes the vertices in the order A -, B -, C -, D -, E -, A, hence represents a cyclic 
operation of order 5. Together M and 1 0 T (isomorphic to A4) generate a group, P5 
say, isomorphic to  A 5 .  It is clear that the adjunction of further symmetry operations, 
which can only be of an improper nature, increases the symmetry group to one isomorphic 
to S 5 .  The latter is the maximum possible, which is proved using a special case of the 
well known result in E,  that there is at most one distance-preserving operation which 
maps any given n +  1 distinct points onto any given n +  1 distinct points. Thus we have 
explicitly embedded A &Z)as Ps in SO(4) and also S5(Zh) in O(4). Finally, by prolongation 
of the edges of the pentahedroid, it is clear that it can be taken as the unit cell of a Bravais 
lattice and hence we verify that P5 is a crystallographic point group. 

We now turn to the relationship between the rep theory of SO(4) and that of Z. There 
are two possible approaches to the rep theory of S0(4), which we briefly review here. 
First, we may regard SO(4) as the special case n = 4 of the group SO(n), whose rep theory 
is expounded, for example, in Boerner (1970). The conjugacy classes of SO(4) are labelled 
by two angles (4,$) corresponding to the elements in a maximal torus of the form 
E ( 4 )  0 E ( $ )  where 

cosu -sinu 
sinu cosa 

E(a) = (3.2) 
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The reps of S0(4), denoted D ~ , , ,  in Boerner (1970), are labelled by pairs ( m , ,  m2),  
m ,  2 Im,l, single-valued reps having m ,  , m2 both integral, and double-valued reps 
having m ,  , m, both half-integral. The value of the character of D:,,, at the class (4,  I)) is 

(3.3) 

and the dimension is (m ,  + 1), - m: . 
In order to discuss the relationship between the reps of SO(4) and Z it is necessary 

to specify the values of (4,  t+b) for the classes of the latter group. These values appear in 
table 2 in the appendix, and were determined with the aid of Hurley (1951). We note from 
table 3 that each rep of l i s  the restriction of some rep of SO(4), which means that opera- 
tions on the reps of Z may be performed on the corresponding reps of S0(4), provided 
that we are able to reduce the subduced reps D:,,, 1 Z, for all (m , ,  m,). Unfortunately 
the sort of regularities which appeared when we restricted reps of SO(3) to Zare now not 
so easy to describe using the above rep theory of SO(4). We do, however, observe that 
2,,,, = xml . - , , ,  where x,,,, is the character of D:,,, 11. 

However, we can overcome the difficulty by appealing to an alternative approach to 
the reps of SO(4). This depends on the result that the natural universal covering group of 
SO(4) is SU(2) x SU(2). We recall the following from Talman (1960). Let 

t + i z  -y+ix 
y+ix  t-1: 

x = (  ( 3.4) 

be any member of SU(2). If A, Bare further members of SU(2), then so is A X B -  ’, which 
may be written uniquely in the form 

t’ + iz’ 
y’ + ix’ 

- y’ + ix’ 
t‘ + iz’ 

(3 .5)  

Then it is easy to check that R :  (x, y ,  z ,  t )  + (x‘, y’, z’, t ’ )  extends linearly to an SO(4) 
operation, and moreover that the map ( A ,  B)  + R of SU(2) x SU(2) + SO(4) is 2-1, onto 
and a homomorphism. Also the maximal torus in SO(4) corresponds to choosing A ,  B 
in the form ? diag(exp 4 2 ,  exp - ia/2). Furthermore if a, y label A,  B, respectively, 
and (4, $) label a corresponding element in the maximal torus, then a + y = 24, 
a-y = 21,b. The (a, y )  labels appear in table 2 in the appendix. 

Since SU(2) x SU(2) is a direct product, its reps may be labelled by pairs ( j , ,  j,) 
and expressed as DJlJ2 = Dj’ 0 Dj’, an outer Kronecker product, where Dj is the 
(2j+ 1)-dimensional rep of SU(2). It is easy to check that Djljz  E D:,,, if and only if 
m ,  = j ,  + j ,  and m, = j ,  - j 2 .  We notice also that DJ1jz = Djl’ 0 Do”, an inner 
Kronecker product, hence to reduce Dj1j2 1 Z, it is sufficient to know Dj’’ 1 Zand Dolz 1 I. 
Now the character value at (a, y) of Djo Zis [sin(j+i)a]/sin +a and this is precisely the 
value of the character of D V  at 8 = a. Also, the character value at (a, y) of Do’ 1 Z is 
[sin(j+i)y]/sin+y which is the value of the character Dj Z at 8 = y. The final set of 
entries in table 3 are the ( j ,  , j,) labels of the reps of SU(2) x SU(2), and serve to tie 
together some of the results of the previous section. 

The procedure to be followed for the reduction of W 2  1 l i s  now clear, for it is merely 
necessary to take the inner Kronecker product of D v  with DJ2 1 I, taking advantage 

. .  
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of equations (2.2) to (2.5) with related text and also the Clebsch-Gordan series of reps 
of I .  

We turn now to the problem of symmetrizing the reps of SO(4). From an inspection 
of the appended tables, we see that, with one exception, we are led directly back to the 
SO(3) approach discussed in 9 2. The exception is in G = D*+ 1 Z, which is not expressible 
in the form D’O 1 Z or Doj 1 I .  Also, we note that I , , ,  can be expressed as D f ’  1 Z and 
D 1 +  1 I ,  which are not of a simple SO(3) nature. In order to symmetrize these representa- 
tions we need some results from Gard and Backhouse (1974), Backhouse and Gard 
(1974b) and Gard (1974) on the symmetrization of reps of SO(3) and SO(4). First 

(D+j)[”l = @ 4 v I  ; [PI, [p’I)D(m, m’) 8 (DOj)[PJ 8 (Doj)[”],  (3.6) 
m>m‘ 

where [ p ]  = (pl , p2), [p’]  = (,U;, p i )  are UIR of S,, S,,, respectively, for m+m‘ = n, 
and a([v];  [ p ] ,  [p ’ ] )  is the frequency of [ v ]  in [p]  0 [p’] = [p]  8 [p‘] t S,,, induced from 
S, x S,. . Also, 

5 form 2 m ’ + 2  
for m = m’+ 1 

for m = m’. 

D+(m-m’)O 0 D+(m-m‘-2)0 

(3.7) 

The casesj = i, 1 are of interest to us, and for them we need 

in which the direct subtractions are absent if p 1  = p 2 ,  and 

(3.10) 

Equation (3.6) has a complicated appearance, but it is in fact more easily handled than 
one based on (2.1), because the symmetric group involvement is via the outer rather 
than the inner Kronecker product. 

This concludes our discussion of the SO(4) orientated rep theory of I .  However, it 
is perhaps interesting to note briefly that certain generalizations are possible. We have 
in mind the fact that the regular tetrahedron and its symmetry group have analogues in 
all dimensions, namely that the proper Euclidean symmetry group of the regular 
(n+ 1)-hedroid in E ,  is isomorphic to A , ,  and the full Euclidean symmetry group is 
isomorphic to S,,, These groups are crystallographic. For further discussion we refer 
to Coxeter (1948). As another realization of this result we note that the extended set of 
fundamental weights of the rank n -  1 Lie group SU(n) form the vertices of a regular 
n-hedroid in E,- the weight space of SU(n), and that the Weyl group is S,, (for example, 
see Speisec 1965). From these geometric observations we have an explicit embedding of 
A , ,  in S a n )  and S,,, in O(n). Also, it is not hard to check that the restriction to S,,, 
of the self-representation of O(n) is the n-dimensional rep[n, 11, confirming a result 
proved purely algebraically by Butler and King (1973). 
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Appendix 

We display below in tabular form the simples characters ofland the relationships between 
the various parameters used in the text. 

Table 1. Character table of I .  

1 
-1  
- 1  

0 
1 
0 
0 
0 
0 

1 
0 
0 
1 

- 1  
1 
1 

-1 
0 

Table 2. Class parameters of I .  

(a) The parameters 0, (9, (L), (a, y )  correspond to class parameters in S 0 ( 3 ) ,  S0(4), SU(2) x 
SU(2) respectively. 
(b)  The other rotation angles in the classes of I have been omitted. 

Table 3. Representation parameters of I .  

I "t Tl T, G H ' 7 1 2  G3/2  'Si2 

SU(2) x SU(2) - 
( a )  An entry j o r j  in row 2 indicates that the rep DJ 1 I or DJ 4 I is equivalent to the rep of 
I in the same column. 
(b) Entries (ml, m,) and (jl,j2) in rows 3 and 4 refer to reps D:,m, and DJIJ2 of SO(4) and 
SU(2) x SU(2), respectively. 
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